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Anderson localized state as a predissipative state: Irreversible emission of thermalized quanta
from a dynamically delocalized state
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It was shown that localization in one-dimensional disordered~quantum! electronic system is destroyed
against coherent harmonic perturbations and the delocalized electron exhibits an unlimited diffusive motion
@Yamada and Ikeda, Phys. Rev. E59, 5214~1999!#. The appearance of diffusion implies that the system has
potential for irreversibility and dissipation. In the present paper, we investigate dissipative property of the
dynamically delocalized state, and we show that an irreversible quasistationary energy flow indeed appears in
the form of a ‘‘heat’’ flow when we couple the system with another dynamical degree of freedom. In the
concrete we numerically investigate dissipative properties of a one-dimensional tight-binding electronic system
perturbed by time-dependent harmonic forces, by coupling it with a quantum harmonic oscillator or a quantum
anharmonic oscillator. It is demonstrated that if the on-site potential is spatially irregular an irreversible energy
transfer from the scattered electron to the test oscillator occurs. Moreover, the test oscillator promptly ap-
proaches a thermalized state characterized by a well-defined time-dependent temperature. On the contrary, such
a relaxation process cannot be observed at all for periodic potential systems. Our system is one of the minimal
quantum systems in which a distinct nonequilibrium statistical behavior is self-induced.

DOI: 10.1103/PhysRevE.65.046211 PACS number~s!: 05.45.2a, 72.15.Rn, 71.55.Jv, 71.23.2k
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I. INTRODUCTION

Localization problem has attracted much interest
many years@1,2#. Scaling theory of localization suggests th
the dimension of disordered systems is directly related to
nature of localization@3#. In two-dimensional disordered sys
tem ~2DDS! the localization length is much enhanced
comparison with the one-dimensional disordered sys
~1DDS!, but the localization is not still destroyed. In thre
dimensional disordered systems~3DDS! there exists the mo
bility edge in the energy domain above which the localiz
state is spatially extended. From quantum dynamical and
tistical points of view, the state that appears after the dest
tion of the localized state, which may be called thedelocal-
ized stateto distinguish from coherently extended state su
as the Bloch state, seems to support a complex motion
other words, the delocalized system, whose eigenbases
almost delocalized, seems to provide with one of the s
plest examples of quantumdeterministicsystems that allow
complex stochastic behaviors@4#, but its quantum dynamica
and quantum statistical properties have not been so ex
sively investigated. The reason will be that, unlike the loc
ized state to which the renormalization-group-type techni
is applicable, it is essentially difficult to device any theor
ical ideas to clarify the delocalized state. Further, the 3D
that exhibits a typical delocalization do not allow preci
numerical studies if the system size is taken large enoug
investigate the fully extended states.

*Email address: hyamada@cc.niigata-u.ac.jp
†Email address: ahoo@mp0tw009.bkc.ritsumei.ac.jp
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If we can design some more simple and numerically
cessible systems that exhibit localization and delocaliza
behaviors, the study of delocalization behavior will be mu
more advanced. One class of such examples are the
dimensional incommensurate potential systems that h
been studied extensively by a number of authors@5–7#.

Another class of systems may be introduced by shift
our viewpoint: the spatial dimension of the disordered s
tems is nothing more than the number of degrees of freed
which implies that we may construct a class of systems
hibiting localization and delocalization behaviors by addi
new dynamical degrees of freedom instead of increasing
spatial dimension@8–11#. Based upon such an idea, we i
troduced the 1DDS that is perturbed by the time-depend
harmonic force containing several number of frequency co
ponents@11–14#. In our model the number of colors, i.e., th
number of different frequencies, can be interpreted as
number of additional degrees of freedom, because the sys
can be mathematically transformed into the 1DDS coup
with the quantum linear oscillators oscillating at the same
of frequencies@11,13#. We succeeded in demonstrating th
transition between localized state and the delocalized s
really occurs by changing the number of frequency com
nents and/or the perturbation strength@14#. A great advantage
of our system is that it is essentially a one-dimensional qu
tum system that allows a very long time scale numeri
computations with an extreme numerical accuracy, and
very convenient for the quantum statistical and dynami
studies for delocalized state@15#.

The time-dependent perturbation itself provides a reali
physical mechanism that much influences the localizat
properties. Thouless first supposed that the dynamical pe
©2002 The American Physical Society11-1
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HIROAKI YAMADA AND KENSUKE S. IKEDA PHYSICAL REVIEW E 65 046211
bations by phonons break the localization and brings ab
diffusion even in strongly localized systems such as 1D
@16#. An electron, which has a well-defined momentum in t
initial stage, loses its memory on the momentum and fina
moves like a Brownian particle. However, it has not be
very clear what kind of dynamical perturbation destroys
localization mechanism and results in a stationary diffus
in the disordered systems.

If we suppose that the perturbation is due to the phon
composed of infinitely large number of modes, the pertur
tion must be an incoherent stochastic force with a finite c
relation time. It seems quite natural that the incoherent fo
destroys the quantum coherence that is necessary for
emergence of localization effect. Indeed some authors
posed analytically soluble stochastic models of 1DDS,
the realized diffusion is controlled only by the nature of t
stochastic perturbation and is not significantly influenced
the nature of localization@17,18#.

In the previous paper@14#, we demonstrated that the in
coherent perturbation is not necessary for the localiza
effect to be destroyed: a coherent harmonic perturbation
containsmore than one frequency components, i.e., more
than one phonon modes, is sufficient for the destruction
the localization. Under such a simple dynamical pertur
tion, the electron exhibits an unlimited diffusive motion, a
the diffision constant is related to the localization length
was predicted by Thouless provided that the perturba
strength is weak enough. This fact implies that Anders
localization mechanism is converted into a diffusion mec
nism with the help of only a small number of dynamic
degrees of freedom. Our system is a deterministic quan
system with a few degrees of freedom that is isolated fr
the external world. Appearance of diffusion in our syste
implies that the dynamically perturbed electron of 1DD
‘‘spontaneously’’ acquires irreversible dynamical propert
without introducing any dynamical randomness from the
ternal world.

Similar phenomena are known also in classically chao
quantum dynamical systems that exhibit chaotic diffusion
the classical limit. In the quantum systems, the classical c
otic diffusion is suppressed by the localization mechanis
but the diffusion is restored by coupling these systems w
each other at a classically negligible very weak coupl
strength@19,20#.

Appearance of diffusion in 1DDS means that if the ele
tron initially has a definite momentum it can lose the m
mentum through the interaction with the dynamically p
turbed irregular scatterers. However, it is not sufficient
the stationary conduction of electron to be realized. The
netic energy initially possessed by the electron should a
be dissipated asheat. Just this energy dissipation problem
the subject of the present paper.

In the traditional theory of transport phenomena, it is i
plicitly and/or explicitly supposed that the electronic syste
is coupled with a heat reservoir@21–26#. The electron loses
the momentum that it gained through the acceleration p
cess, by the impurity scattering, and in the next step
excess energy is absorbed by the heat reservoir. In the
step of the impurity scattering the electron loses the ph
04621
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memory, and the energy relaxation to the reservoir ta
place in the second step. Under such a situation, the a
lutely continuous spectrum of the infinite number of degre
of freedom composing the heat reservoir plays an esse
role in the occurrence of irreversible energy transfer from
electron to the reservoir@27#. In other words, the irreversibil-
ity is caused by the loss of dynamical memory due to
absolutely continuous spectrum of the reservoir@28#. In this
situation the quality of the energy emitted to wards the r
ervoir is not considered. The excess energy is surely
sorbed by the reservoir, but we cannot have any informa
to answer the question:does the energy flow in the form o
heat or in some other form of energy such as radiation tha
convertible to work?

The aim of the present paper is to demonstrate that on
small number of degrees of freedom is sufficient for the
currence of diffusion~the first step! and energy relaxation
~the second step! in 1DDS. We couple the delocalized 1DD
perturbed by a harmonic perturbation with a simple t
quantum system that is prepared in its ground state,
show that the delocalization of the electron results in an
reversible quasistationary energy transfer from the elec
to the test system. Onset of similar irreversible energy tra
fer in systems with a few degrees of freedom was studied
detail by one of the present authors for a class of classic
chaotic quantum systems@29#, and it was shown that unde
appropriate conditions quantum map systems can absorb
ergy stationarily without any quantum recurrence. An imp
tant result in the present paper is that, in addition to
emergence of irreversible energy transfer, we obtain a str
evidence that the energy transfer occurs in the form of a h
flow. In short, the delocalized electron dissipates the exc
energy in the form of heat;delocalization, dissipation, and
heat being the three keywords of the present paper. The
fore, the 1DDS coupled with a small number of degrees
freedom provides a minimal deterministic quantum dynam
cal system that models the whole process of nonequilibr
energy transport in electronic systems.

The outline of the present paper is as follows. In Sec
model systems investigated in the present paper are in
duced. The model we treat here is a one-dimensional tig
binding electron system on irregular or regular on-site en
gies. In the former case the system is 1DDS that exhi
Anderson localization, whereas the latter case models
Bloch electron. The system is further coupled with harmo
perturbation containing a few frequency components. Suc
system is equivalent to an autonomous~i.e., time-
independent! quantum system in which the harmonic pertu
bations are transformed into linear quantum oscillators w
the same set of frequencies. Furthermore, we briefly rev
the phenomenon calledthe dynamical delocalization, which
was observed numerically in the above-mentioned harm
cally perturbed 1DDS and was extensively studied in o
previous paper.

In Sec. III, we propose the simple test that we calldissi-
pation testto investigate dissipative property of any quantu
system, which is done by coupling the quantum system to
tested with a simple test system such as a harmonic oscil
1-2
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ANDERSON LOCALIZED STATE AS A . . . PHYSICAL REVIEW E65 046211
that is prepared in a ground state. Further in Sec. III,
examine the dissipation test for the 1DDS driven by po
chromatic harmonic perturbations. It is shown that under
condition the system is delocalized if the excess energy
tially stored in the electronic system is transported irreve
ibly to the test system in the form of a quasistationary o
way flow.

In Sec. IV, results of the dissipation test for periodic p
tential system are given and compared with the result
1DDS. The energy flow exhibits a recurrent behavior and
one-way flow of energy can be observed in the periodic s
tem.

In Sec. V, we focus our attention to the quantum statis
of the test system, and it is demonstrated that the statis
distribution of test system very promptly approach
Boltzmann-type distribution characterized by a well-defin
time-dependent temperature. Such a remarkable therma
tion occurs only when the electron exhibits a complete de
calization and dissipation. The significance of the therm
zation and a possible underlying mechanism are a
discussed rather in detail.

The last section is devoted to summaries and discussi
Some numerical results in the main text are given in app
dixes.

II. MODELS

In this section we introduce the model systems treate
the present paper. The first model is a nonautonomous
tem of 1DDS perturbed by oscillating harmonic force~s!, the
second one is the autonomous 1DDS coupled with fin
number of harmonic oscillators, and the third one is
1DDS perturbed by harmonic perturbation and coupled w
quantum harmonic oscillators.

A. Nonautonomous model

We consider a tightly binding HamiltonianHI(t) for the
1DDS perturbed by classical driving forces oscillating at
mutually incommensurate frequencies$V j%.

HI~ t !5Hel1Hosc,L~$V j t%!, ~1!

Hel5 (
n51

N

un&V~n!^nu1(
n

N

~ un&^n11u1un11&^nu!,

~2!

Hosc,L~$V j t%!5 (
n51

N

(
j 51

L

e j cos~V j t !V~n!un&^nu. ~3!

The basis set$un&% is an orthonormalized one andV(n) is the
on-site energy of electron at the siten, which varies at ran-
dom in the range@2W,W# from site to site and the transfe
energy vanishes unless the sites are adjacent.

The time-dependent nonautonomous system can be tr
formed into a time-independent autonomous system. As
autonomous counterpart of the model~1!, we consider the
autonomous Hamiltonian
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j 51

L

V j Jj1Hosc,L~$f j%!, ~4!

where the source of the external harmonic perturbation in
model ~1! is taken into account by the linear oscillators d
scribed by the angle variable operatorsf j and their conju-
gate action variable operators

Jj52 i\
]

]f j
. ~5!

Then it follows that the time-evolution unitary operator
the autonomous system is related to the unitary tim
evolution operator of the autonomous system

exp$2 iH I
autt/\%5expH 2 i (

j 51

L

V j Jj t/\J
3T̂ expH 2 i E

0

t

dsHI~V j s1f j !/\J ,

~6!

whereT̂ means time-ordering operator. If we take the eige
state of the angle operators with the eigenvaluef j 0 as the
initial state of the linear oscillator, then the action of th
evolution operator of the autonomous model is equivalen
that of the original nonautonomous model perturbed with
harmonic force with the initial phasesf j 0.

It is well-known that almost all the eigenstates are exp
nentially localized in 1DDS without the perturbation~i.e.,
e j50) @1#. The finite localization length means that if th
initial wave packet is spatially localized, the wave pack
does not spread over the space, and the memory on the in
wave packet do not disappear. In other words, there are
stochastization process that result in any statistical beha
and the 1DDS is not ergodic and, of course, does exhibit
mixing property, i.e., no decay of correlation. Such featu
may be, however, drastically changed if the localized sys
is perturbed by the harmonic forces$cos(Vjt)% @12–14#. We
will give a brief summary of the nonautonomous system
Sec. II B, which describes the key features to understand
motivation of the present paper.

For the sake of simplicity,e j common values are taken fo
the perturbation parameters, such that

e j5
e

AL
, ~7!

in the present paper, and the parametere characterizes the
perturbation strength.

B. Dynamical delocalization in nonautonomous system

In our previous paper@14# we showed that the 1DDS
exhibits a remarkable delocalization behavior when it is p
turbed by classical oscillating forces with several frequen
components. Since such a delocalization phenomenon
1-3
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HIROAKI YAMADA AND KENSUKE S. IKEDA PHYSICAL REVIEW E 65 046211
key to understand the occurrence of irreversibility and dis
pation that are the main subjects of the present paper,
review it rather in detail.

When oscillatory harmonic perturbations are applied
1DDS, an initially localized wave packet of electron@C(t
50)5dn,0# spreads unlimitedly, and we called such a qua
tum statedynamically delocalized state. It is very interesting
that such a nonlocalized state can be easily realized onl
applying a weak coherent perturbation. The delocalizat
property can be quantitatively characterized by the m
square displacement~MSD! of the wave packet:m2(t)
5^C(t)un̂2uC(t)&, where n̂[(n51

N nun&^nu is the position
operator andC(t) is the time-dependent wave packet.

It is found that the wave packet, which is localized wit
out the interaction with the oscillatory perturbation, sprea
beyond the original localization length as time elapses. T
diffusive behavior is observed within the time scale acc
sible by numerical computations, and the diffusion proces
not in general the normal diffusion but a subdiffusion, whi
is characterized by a power law increase,

m2~ t !;ta ~0,a<1!. ~8!

The subdiffusive behavior approach the normal diffus
(a51) promptly as the numberL of the frequency and/o
the perturbation strengthe increase. However, we note th
in the monochromatic case (L51) the diffusive behavior is
suppressed at a certain level that is much longer than
original localization length. We investigate the property
the delocalized states in the following sections.

C. Autonomous model

Let us consider the model of the 1DDS coupled with fin
number of harmonic oscillator modes with incommensur
frequencies$v j%,

HII 5Hel1Hph,M1Hint,M , ~9!

where Hph,M represents the harmonic oscillator Hamilt
nians

Hph,M5(
j 51

M S p̂ j
2

2
1

v j
2q̂ j

2

2
D , ~10!

and the interaction Hamiltonian with coupling strength$bj%
is given by

Hint,M5 (
n51

N

(
j 51

M

un&V~n!^nubj q̂j . ~11!

Physically such additional harmonic oscillators can
looked upon as the phonon modes that perturb the electr
system, and so we often call them ‘‘phonon modes.’’
using the creation and annihilation operator of Fock state
the harmonic oscillators, the interaction Hamiltonian is
written as
04621
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(
i 51

M

un&V~n!^nub i~ai
†1ai !A\v i

2
, ~12!

whereb i[bi /v i .
Now we make clear the relation between the two mod

HI(t) andHII . To this end, we consider the extreme case
which all the phonon modes are excited around the F
states with large quantum numbers,Nj* ( j 51,2, . . .M ).
Then only the Fock states close to such states are relevan
the interaction process, and the matrix elements of the in
action Hamiltonian can be looked upon as a constant bec

^N1* 1n1 , . . . ,NM* 1nMuHint,MuN1* 1n18 , . . . ,NM* 1nM8 &

' (
n51

N

(
j 51

M

un&V~n!^nubjANj* \

2v j
dnj ,n

j861 ~13!

for nj ,nj8!Nj* . Under the approximation, the autonomo
systemHII becomes equivalent to the autonomous coun
part HI

aut of the nonautonomous modelHI(t). Indeed, if we
use the action eigenstates of the action operators such
Jj umj&5mj\umj& (mj : integers! as the basis for the mode
HI

aut , the phase variable representation of the action eig
states is given bŷ $f j%u$mj%&5P j 51

M eimjf j /A2p, and the
matrix elements of the interaction HamiltonianHosc,L with
respect to the action eigenstateP j

Mu$mj%&, which is given by

^$mj%uHosc,L~$f j%!u$mj8%&5 (
n51

N

(
j 51

L

un&V~n!^nu

3e jdmj ,m
j861/2, ~14!

is equivalent toHint,M under the following identifications:

u$Nj* 1nj%&↔u$mj%&, ~15!

e j↔A2bj
2Nj* \

v j
. ~16!

Thus the harmonically perturbed nonautonomous system
equivalent to the autonomous system coupled with harmo
oscillators when all the harmonic oscillators are excited
large-quantum-number states.

If the number of phonon modes goes to infinity with a
absolutely continuous spectrum such asv i} i , then the pho-
non system becomes a boson heat bath that has been us
the model of heat reservoir@27#, but the number of phonon
modes is keptfinite throughout our treatment.

D. Mixed model

If some of the harmonic oscillators are highly excited, w
can replace them by the time-dependent harmonic pertu
tion. In this paper we mainly treat with a conventional mod
in which most of the harmonic oscillators~the number isL)
are replaced by time-dependent harmonic perturbations
the same frequency, but a very few number of oscillators~the
number isM ) are in the ground state and so they cannot
1-4
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ANDERSON LOCALIZED STATE AS A . . . PHYSICAL REVIEW E65 046211
replaced by the time-dependent harmonic perturbation.
significance of treating such a type of mixed model will
discussed in detail in Sec. III. The model Hamiltonian is th
given by

HIII 5Hel1Hph,M1Hint,M1Hosc,L~$V j t%!. ~17!

We solve the Schro¨dinger equation for the three sorts
Hamiltonians

i\
dC~ t !

dt
5HC~ t ! ~H5HI , HII or HIII !, ~18!

numerically.

III. DISSIPATION TEST CASE OF DYNAMICALLY
DELOCALIZED STATES

We propose a simple test to examine whether a gi
system is dissipative or not. Since the notion of dissipatio
not very clear particularly in microscopic quantum system
we give a definition of thedissipationthat we adapted in the
present paper.

Let us consider a quantum systemS, such as the 1DDS
and make it contact with a test quantum systemT, which is
composed of only 1 degree of freedom and is prepared in
ground state. As a typical example ofT, we may present a
harmonic oscillator. We say thatS is dissipativewith respect
to T, if a one-way flow of energy fromS to T is induced until
an equilibrium is achieved betweenS and T. Most of the
quantum systems composed of a small number of degree
freedom will be nondissipative, although there are some
ceptional examples in classically chaotic quantum syste
@29#.

What we wish to show in this section is whether or not t
delocalized systems discussed in the previous section, w
is a single electron system coupled with a small numbe
oscillatory perturbations, isdissipativein the above sense. I
the delocalized state, which is realized by perturbing
Anderson-localized state very weakly, becomes dissipat
we can attribute the essential origin of the dissipation to
generic nature of the Anderson localized states. In the se
the Anderson-localized state is apredissipativestate as is
used in the title of the present paper.

A. Technical remarks

In the present case the quantum systemS consists of an
electron and oscillatory perturbation, which is represented
the HamiltonianHI(t). In order to investigate whether th
system is dissipative or not, we set the test mode at
ground state and couple it withS. Since we use a harmoni
oscillator as the test mode, the whole system relevant for
dissipation test is equivalent to the mixed modelHIII of L
>2 andM51 introduced in Sec.II D.

First we examine the dissipation test with the Anders
localized 1DDS without any oscillatory perturbatio
(L50-system!. Second, we try the dissipation tests f
dynamically delocalized states that are observed
L>2-systems.
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The key parameters controlling the dissipation test are
frequencyv1([v) and the coupling strength,b1([b). In
our simulation the parameter\v is chosen as 0.1, and Planc
constant is fixed. The periodic boundary condition is im
posed on both electron and the test phonon mode in orde
apply the fast Fourier transformation, where the site num
of electron and the number of meshes of the test mode
taken typicallyN5128 andNph564, respectively. We did
not take the ensemble average over different configurat
of the disordered system because of the limitation of
computer power. We mainly used 60 000 step, i.e., the t
time T51500.

We prepare the electron initially in a highly excited sta
and compute the time-dependent electronic energyEel(t)
5^C(t)uHeluC(t)&, MSD and the energy stored in the te
mode, i.e., Eph(t)5^C(t)uHph,MuC(t)&, by the time-
dependent wave packetC(t). We number the localized
eigenstates of the isolated 1DDS from the top of the ene
levels and denote the number bynel . We mainly use the
third eigenstate (nel53) as the initial state of the electro
system.

B. Unperturbed case„MÄ1, LÄ0…

In this section, we examine the dissipation test for isola
1DDS by coupling it with a harmonic oscillator, which i
taken asT. Since the systemS is Anderson localized in the
present case, we may expect that there is no dissipation w
S is coupled withT. However, an interesting problem in th
present case is whether the back action from the exciteT
itself works for the localized electron like an oscillatory pe
turbation and may significantly change the localization pro
erties.

The time dependence of electronic energy and phono
energy of the test mode together with MSD of electron
respectively displayed in Figs. 1~a,b,c! for several values ofb
and the fixed valuev50.8. In this case the energy of th
total system is conserved and the decrease in the electr
energy transfers to the increase of the phononic energy.
very weak coupling strength (b50.2), there is no significan
transfer of energy from the electron to the phonon. But as
coupling strength exceeds a critical level (b;0.5), the trans-
ferred energy to the phonon suddenly increases, and at
tively strong coupling strengths (b50.9 and 1.1! the energy
of electron decreases monotonically, and so the energy e
ted to the phonon modeT does not return to the electro
system. The energy transferred from the excited electro
almost stored in the phonon mode~see Fig. 2!. Correspond-
ingly, the wave packet also spreads suddenly from the or
nal Anderson-localization length to the level comparable
the system size. We can interpret that such a type of tra
tion is due to the self-induction of the oscillatory perturb
tion by T. In this sense it seems that the systemS attains a
dissipative property above the threshold, but the decreas
the electronic energy is not complete and does not reach
zero level. This fact implies that the achieved dissipation
not still complete. Correspondingly, the growth of MSD d
1-5
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HIROAKI YAMADA AND KENSUKE S. IKEDA PHYSICAL REVIEW E 65 046211
picted in Fig. 1 terminates at the level smaller than the s
tem size, and so the localization length is drastically
hanced but the localization is not still destroyed.

As a result, we can conclude that the electron energy
reversibly flows to the phonon mode if the coupling stren
exceeds a critical value, but the flow of the energy satura
before the system reaches a fully relaxed state.

C. Polychromatically perturbed case„MÄ1, LÐ2…

In this section we examine dissipation test for the po
chromatically perturbed 1DDS. When the number of the f
quency components of the perturbation is larger than
equal to 2 (L>2), the 1DDS exhibits typical sign of dynam
cal delocalization. Note that monochromatically perturb

FIG. 1. Time dependence of~a! an electronic energy,~b! a
phononic energy, and~c! MSD of electron for variousb50.2, 0.5,
0.9, and 1.1, whereW50.9, \51/8, andv50.8 in autonomous
systems without any perturbation (e50.0). The energy and the spa
tial length are scaled in units of transfer energy and lattice cons
of the electronic system, respectively, throughout the present pa
04621
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-

r-
h
es

-
-
r

d

1DDS cannot show the delocalized behavior although
localization length is enhanced@14#. The dissipation test for
the monochromatically perturbed 1DDS is given in Appe
dix A.

Typical examples of time-dependent energy transfer
tween a polychromatically perturbed system (L55) and the
test mode are depicted in Figs. 3 and 4. Figure 3 shows
time-dependent features observed at various values of pe
bation strengthe with the fixed coupling strengthb50.4,
whereas Fig. 4 shows the results at various values ofb with
the fixed perturbation strengthe50.4.

In all cases the MSD grows up to the maximum scale a
so a complete delocalization is achieved, and the electro
energy shows a very nice relaxation behavior. In the ea
stage of time evolution, the electron loses its energy linea
in time, which is observed as the linear increase of
phononic energy. In such a quasistationary regime the em
sion rate of energy per unit time can be well defined. Mon
tonic increase of phonon energy continues until the wa
packet spreads over the system size and the electronic en
approaches zero level, which indicate a complete delocal
tion.

It seems that the dissipative nature is not lost even at v
small e, but the energy transfer rate depends linearly one if
e is small enough. It is also proportional to the couplin
constantb.

In conclusion, all the above features indicate that a co
plete dissipation is realized in case ofL>2.

Finally, we overview theL dependence of the time
dependent behavior in Fig. 5. It is evident that as the num
L of the frequency components increases, the localizatio
destroyed and simultaneously a nice one-way transfer of
ergy from the electron to the phonon appears. In the limit
L→` the ‘‘oscillatory’’ perturbation becomes a rando
force, and it seems to be no wonder that such a stocha

nt
er.

FIG. 2. The change of electronic energy2DEel as a function of
change of the phononic energyDEph for someb’s (s) and v ’s
(h) in autonomous systems without any perturbation (e50.0).
1-6
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ANDERSON LOCALIZED STATE AS A . . . PHYSICAL REVIEW E65 046211
perturbation destroys the localization phenomenon tha
just a manifestation of quantum coherence. Indeed, we s
in Appendix B 1 that very similar results are obtained in t
dissipation test of stochastically perturbed 1DDS. Howev
we have to emphasize that only a small number of differ
frequencies is sufficient for the system to exhibit compl
delocalization and complete dissipation.

IV. DISSIPATION TEST CASE OF BLOCH STATES

If the on-site energy of electronic system varies perio
cally, the electron is in Bloch states that are fully extend
over all the sites on the one-dimensional lattice. We m
expect quite different dissipation property for such perio
systems. In this section we examine the dissipation tes

FIG. 3. Time dependence of~a! an electronic energy,~b! a
phononic energy, and~c! MSD of electron in polychromatically
perturbed cases (L55), whereW50.9, \51/8, b50.4, v50.8,
and various perturbation strengthse50.1, 0.2, and 0.4. The fre
quency components of the perturbation$V i% are chosen within a
range@0.5,1.5# randomly.
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Bloch electron in periodic systems and compare the res
with those of the delocalized system investigated in the p
vious sections.

First we consider the simplest periodic case in which
the on-site energiesVn are the same. Then the total syste
consisting of the electronic part and the test harmonic os
lator, becomes separable, thus the test systemT does not
couple with the electron system. We, therefore, conside
binary periodic system, in which the on-site energy var
periodically as Vn5W, Vn1152W, Vn125W, Vn13
52W . . . from site to site.

A. Monochromatically perturbed case „MÄ1, LÄ1…

We perturb the binary periodic 1D electron system with
monochromatic perturbation and regard it asS. It is evident

FIG. 4. Time dependence of~a! an electronic energy,~b! a
phononic energy, and~c! MSD of electron in polychromatically
perturbed cases (L55), whereW50.9, \51/8, e50.4, v50.8,
and various coupling strengthb50.2, 0.4, 0.8, 1.1. The frequenc
components of the perturbation$V i% are chosen within a range
@0.5,1.5# randomly.
1-7
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HIROAKI YAMADA AND KENSUKE S. IKEDA PHYSICAL REVIEW E 65 046211
that such a system is not separable when it is coupled
theT mode, and energy in general transfers betweenS andT.

The time dependence of electronic and phononic ener
together with MSD of electron are respectively displayed
Fig. 6. The figure shows the energy recurs betweenS and the
test modeT, which is initially prepared in the ground stat
Furthermore, such properties of the time dependence d
not depend on whether the time-dependent oscillatory pe
bation (L51) exists or not.

B. Polychromatically perturbed case„MÄ1, LÐ2…

The essential behavior of the time dependence is alm
the same as monochromatically perturbed case excep
periodic pattern of the recurrence. The energy oscillates

FIG. 5. Time dependence of~a! an electronic energy,~b! a
phononic energy, and~c! MSD of electron in monochromatically
and polychromatically perturbed cases (L51,2,4,5), whereW
50.9, \51/8, b50.4, v50.8, ande50.4. The frequency compo
nents of the perturbation$V i% are chosen within a range@0.5,1.5#
randomly.
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tween electron and the test mode, and net energy tran
cannot be observed even in the cases where we use m
frequency components~see Fig. 7!.

However, if the polychromatic perturbation is replaced
a stochastic perturbation, which corresponds to the limiL
→`, the energy transfer from electron to the test mode
observed, and the test system can absorb energy from
tronic state, where the absorption rate increases appr
mately proportional to the perturbation strength. This is
quite natural result that the random force externally int
duced destroys the quantum coherence that yields the q
tum recurrence. The result is given in Appendix B 2.

As a result we cannot observe any one-way energy tra
fer between the perturbed spatially periodic system and
test mode: the electron and theT-phonon mode exchang

FIG. 6. Time dependence of~a! an electronic energy,~b! a
phononic energy, and~c! MSD of electron in unperturbed (e50)
and monochromatically perturbed (e50.4) binary periodic systems
where W50.9, \51/8, b51.0, and the frequenciesv50.8, V1

5A2.
1-8
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ANDERSON LOCALIZED STATE AS A . . . PHYSICAL REVIEW E65 046211
energy quasiperiodically over all the time scale. We may t
conclude that spatial irregularity of the on-site energy is
sential for the onset of dissipation.

V. STATISTICAL PROPERTY OF TEST MODE

In the original sense of dissipation, the irreversible tra
port of energy is not sufficient condition for the onset
dissipation. More precisely, a dissipation process is tak
place if the two features are observed:~*1! a one-way flow
of energy occurs fromS to T, and,~*2! the energy is trans
ported in the form ofa heat flow. In the present section, w
pay attention to quantum state of the harmonic oscillato
other degrees of freedom during the time evolution.

A. Dissipation and Boltzmann-type distribution

In this section we return to the dissipation test for t
periodically perturbed 1DDS. The polychromatic perturb
tion destroys Anderson localization, and a one-way tran
of energy occurs from the delocalized system if the system
coupled with another degree of freedomT, which is taken as
a harmonic oscillator mode in our simulation. Such a proc
can be regarded as a spontaneous emission of qu
~phonons! generated by a radiation source composed of
electronic degree of freedom. Roughly speaking, the qua
tationariness of the irreversible emission of phonons will
attributed to the decoherence of the radiation source, wh
is self-generated through the interaction process of the 1D

FIG. 7. Time dependence of~a! an electronic energy and~b! a
phononic energy in polychromatically perturbed (L55) binary pe-
riodic system, whereW50.9, \51/8, b50.3, e50.4, and the fre-
quenciesv50.8, V15A2.
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with the oscillatory perturbation. It is of great interest
investigate the quantum statistical property of the radia
quanta.

First we show in Fig. 8 the case of a polychromatic p
turbation (L55) that exhibits a typical dynamical deloca
ization. The semilog plots of probability distribution wit
respect to the Fock spaceP(Enph

)5^nphuC(t)&u2 of the test

phonon mode versus the eigenvalue of energyEnph
are de-

picted at several time steps, whereunph& is the number state
of the phonon mode. A remarkable fact is that the plots
ride on a straight lines very well, and so the distribution
the Fock space is well fitted by the Boltzmann-type distrib
tion characterized by the time-dependent temperatureT(t),

P~Enph
!}exp$2Enph

/T~ t !%. ~19!

We show in Fig. 9 that the off-diagonal eleme
P(mph ,nph)5^mphuC(t)&^C(t)unph& (nphÞmph) decays
quickly in time and finally exhibits a rapidly fluctuating mo
tion around zero, which vanishes if averaged over a lon
time scale.

Figure 10 shows the time-dependent temperature ev
ated by the data in Fig. 8. The phonon temperatureT(t) rises
in accordance with the energy of the test phonon mode,
when the phononic energy saturates the temperature
reaches an equilibrium temperature. When the polychrom
perturbation is replaced by a stochastic perturbation, a s
lar Boltzman-type distribution can also be observed. The
sult is given in Appendix B 1. In this way, the polychromat
perturbation composed of only finite number of frequen
components gives rise to the same effect as the stoch
perturbation. On the other hand, the Boltzmann-like statis
of theT mode is not observed when the oscillatory perturb
tion contains less than two frequency components and

FIG. 8. Phonon distributionP(Enph
)5u^nphuC(t)&u2 at several

times (t5100,200,300,400,500) in the polychromatically perturb
case (L55). The parameters areb50.4 ande50.4.
1-9
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HIROAKI YAMADA AND KENSUKE S. IKEDA PHYSICAL REVIEW E 65 046211
systemS does not exhibit a complete delocalization. Figu
11 shows such an example. Indeed, the semilog plot of
distribution function significantly deviates from the straig
line of the Boltzmann-type distribution.

We can therefore conclude that the emergence of c
plete dissipation is obviously correlated with the formati
of the Boltzman-type distribution in the test phonon mod

B. Generality of thermalization

Why the Boltzmann-type distribution emerges when
system is dissipative? We can give a simple phenomenol
cal interpretation. To the end, we derive the Heisenb
equation of motion for the annihilation operatora(t) of theT
mode:

da~ t !

dt
52 iva~ t !1R~ t !, ~20!

where the termR(t), given by

R~ t !52 ibA v

2\(
n

U~ t !un&Vn^nuU†~ t !, ~21!

FIG. 9. Time dependence of~a! real part and~b! imaginary part
of some off-diagonal elements (nph50,1) of the density matrix
P(nph ,nph11)5^nphuC(t)&^C(t)unph11&. The parameters are
the same as in Fig. 8.
04621
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works as a radiation source for theT mode. It then immedi-
ately follows that

a†5E
0

t

dse2 iv(t2s)R†~s!. ~22!

As is described in Sec. III, the phonon number increase
proportion tot in the initial stationary stage, which can b
explained by supposing that the correlation functi
^R†(t2)R(t1)&[F(t1 ,t22t1) depends weakly ont1 and de-
cays very rapidly as time intervalut22t1u exceeds a shor
characteristic timetc . Neglecting the weak dependence
the correlation function ont1, the expectation value ofT
increases in proportion to time,

^a†a&5tE
0

`

e2 ivsF~s!ds. ~23!

Further, from Eq.~20!, a† is an integration over the stocha
tic source with the very short characteristic timetc . The
amplitudea† is a sum over statistically independent quan
ties and hence should obey a Gaussian stochastic
cess@22#. Regardinga† as c number, the distribution func-
tion of a† should be the Gaussian distributionP(a,a†)
}exp$2const3uau2%, which is equivalent to the Boltzmann
type distribution.

Therefore it seems that the thermalization together w
the quasistationary emission of phonons is a manifestatio
a rapid destruction of quantum coherence, which is rep
sented by the decay of correlation. If the above interpreta
is true, the origin of the Boltzmann distribution is due to t
fact that the field amplitude is expressed by an integrat
over the stochastic source, which happens as a result o
particular choice of the systemT. Indeed, if we choose an

FIG. 10. Time dependence of the temperatureT(t) estimated by
data in Fig. 8. The phononic energyEph(t) is added to the graph a
a reference.
1-10
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ANDERSON LOCALIZED STATE AS A . . . PHYSICAL REVIEW E65 046211
anharmonic oscillator instead of the harmonic oscillator
the test system, the integral relation~22! do no longer holds
correct, and the statistics ofT may significantly deviate from
the Boltzmann-type distribution.

To answer the question we examined a simulation
which the harmonic oscillator is replaced by an anharmo
oscillator. We take the quartic oscillator that does not ha
the harmonic potential components as the test systemT:

Hph,M515
p̂2

2
1gq̂4. ~24!

We may expect that the statistics of the quartic oscilla
deviates significantly from the Boltzmann-type distributi
even though the correlation of the source term dec
promptly. We show in Fig. 12 a typical example of the sem
log plot of the probabilityP(Enph

)5u^nphuC(t)&u2 for a sig-

nificant energy range, whereunph& and Enph
are thenphth

eigenstate and its energy, respectively. Contrary to the
expectation, the plot is again almost on a straight line, wh
indicate that the distribution ofT obeys the Boltzmann-type
distribution even in case of the quartic oscillator. Figure

FIG. 11. Phonon distributionP(Enph
)5u^nphuC&u2 at several

times (t5100,200,300,400,500) in monochromatically perturb
case (L51) with ~a! e50.1 and~b! e50.4.
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shows the time dependence of the energy stored in the q
tic oscillator. It again shows a nice linear growth until th
saturation effect due to the finite available energy becom
significant. These facts imply that the thermalization effe
cannotbe attributed to the combined effect due to the line
ity of the test modeT and the rapid decay of correlation i
the radiation source.

We still do not have a definite physical idea to expla
such distinct features, but we will argue on a possible und
lying mechanism in the following section.

C. Anderson localized state as a pre-dissipative state

In the course of the emission of quanta into the modeT
the energy ofT increases as if the system has a well-defin
temperature, and the temperature rises from zero to s
finite valueT(t). The only natural way to prepare a simp
integrable systemT in a thermalized state is to couple th
initial T at zero temperature virtually with a heat reserv
having the same temperatureT5T(t) and infinitely large
heat capacity. If the whole system, i.e., reservoir1T is er-
godic, the quantum statistics ofT should approach the Bolt
zmann distribution. In the process through whichT ap-
proaches an equilibrium state with the heat reservoir,
energy is transported from the reservoir toT in the form of
‘‘heat.’’ The fact that temperature is well defined forT means
that the transfer of energy from the electron to the modT
occurs in the form of ‘‘heat.’’ In short we are allowed t
interpret that the electronic energy is dissipated as h

FIG. 12. Phonon distributionP(Enph
)5u^nphuC&u2 at several

times (t5100,200,300,400,500), in which case a quartic potentia
used as a test mode couple with polychromatically perturbed 1D
(L55). The parameters areb50.4, e50.4, W50.9, \51/8, and
the frequency components of the perturbation$V i% are chosen
within a range@0.5,1.5# randomly. The mesh of the test mode
takenNph5128.
1-11
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HIROAKI YAMADA AND KENSUKE S. IKEDA PHYSICAL REVIEW E 65 046211
Therefore, the irreversible energy transfer process obse
in our system has the second feature~*2! of the onset of
dissipation in a more rigorous sense.

The above consideration suggests an idea on
physical mechanism that makes the systemT to
relax to the thermalized state. Namely, the systemS may
play the role of a ‘‘reservoir’’ forT, which can be realized if
the total systemS1T forms a quantum ergodic system
This conjecture seems to be supported by
following considerations. The autonomous version of
model Hamiltonian ofS, namely, Eq.~3! has the energy
spectrum of

ES~ i ,$nj%!5Ei1(
j 51

L

nj\V j , ~25!

if we neglect the interaction Hamiltonian, whereEi is the

FIG. 13. Time dependence of~a! an electronic energy,~b! a
phononic energy, and~c! MSD of electron in polychromatically
perturbed cases (L55) in quartic potential model of Fig. 12.
04621
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energy eigenvalue of the isolated 1DDS, andnj are deviation
of the quantum number of the linear oscillators from t
initial quantum numberNj* , and they are arbitrary intege
~may be negative!. If the number of colorsL is larger than
one, the nonperturbative energy eigenvalues form a dens
in an arbitrary energy shellE<ES( i ,$nj%)<E1dE. If the
interaction between the electron and phonons allows
transition among arbitrary states contained in the ene
shell E<ES( i ,$nj%)<E1dE, the system is described by
microcanonical ensemble. Such a feature is maintained if
extend the total system so as to includeT, andS1T forms a
quantum ergodic system. Then it is quite natural that
systemT is described by Boltzmann-type distribution, b
causeT forms a relatively small subsystem of the ergod
system. The essential problem is whether or not the inte
tion between the electron and the oscillators enables a gl
connection between the unperturbed quantum states, w
will be strongly correlated with the occurrence of delocaliz
tion. We note further thatS is composed of only a smal
number of degrees of freedom and do not have infinit
large heat capacity. Further detailed studies along the
mentioned above will be reported elsewhere@30#.

Anderson localization is destroyed even by a very we
interaction with a few dynamical degrees of freedom, wh
is simulated by polychromatic perturbation in the pres
paper, and it releases the stored energy as ‘‘heat.’’ This is
very reason why we termed Anderson-localized state a ‘‘p
dissipative’’ state in the title of the paper. We emphasize h
again that our system is a small deterministic quantum s
tem. The ‘‘heat’’ has been considered as a macroscopic c
cept connected with the loss of microscopic information
control the associated system. It will be of fundamental
terest to investigate how the concept of heat can be exten
to microscopic quantum systems. Our system provides w
an example to study the fundamental problem.

VI. SUMMARY AND DISCUSSION

Dissipation property of 1DDS perturbed by time
dependent harmonic driving force, which exhibits a rema
able delocalization behavior, is numerically investigated
coupling the system with another simple system prepare
the ground state. We have regarded that the system is d
pative if an irreversible transfer of energy occurs from t
electronic system to the test system in the form of a one-w
energy flow. It has been demonstrated that the dynamic
perturbed 1DDS is dissipative when the electron is co
pletely delocalized, and moreover the quantum statistics
the test system becomes Boltzmann distribution with a w
defined time-dependent temperature. The latter fact allow
to interpret that the energy transferred from the 1DDS
dissipated as heat. The complete dissipation takes p
when the number of frequency component is more than
and a complete delocalization occurs in the polychrom
cally perturbed 1DDS.

Dissipative behavior is not observed at all if the 1DDS
replaced by periodic potential systems that have Blo
eigenstate. The energy transferred to the test system cha
quasiperiodically around the zero level, and no net ene
1-12
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ANDERSON LOCALIZED STATE AS A . . . PHYSICAL REVIEW E65 046211
transfer can be observed. The spatial irregularity in the
tential plays a critical role in the actualization of dissipati
~and also delocalization!.

The origin of the irreversibility may be attributed to th
complexity in the phase relation peculiar to the localiz
eigenfunction@31,28#. The localization is dynamically de
stroyed even by weak dynamical perturbations, and the ph
complexity manifests itself, resulting in dissipation and d
localization. In this sense the localized state can be rega
as a pre-dissipative state. The potential for mixing and di
pation in localized systems resembles the characteristic
classically chaotic quantum systems@32,29#. Indeed, as dis-
cussed in Introduction, a quantum chaos system also exh
dissipative behavior under a very weak coupling with d
namical perturbations@29#. Chaos provides a promisin

FIG. 14. Time dependence of~a! an electronic energy,~b! a
phononic energy, and~c! MSD of electron in monochromatically
perturbed cases (L51), whereW50.9, \51/8, b50.4, v50.8,
perturbation strengthe50.1,0.2,0.4, and the frequencyV15A2.
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mechanism that can create sufficient complexities to ind
an apparently irreversible behavior in closed quantum s
tems. As is demonstrated in the present paper, spatial irr
larity can also be an origin of quantum irreversibility in sy
tems with a small number of degrees of freedom.
particular, the thermalization effect is a quite new result t
has not still been reported in quantum chaos systems. It
be of interest to explore whether similar thermalization
occur also in quantum chaos systems that exhibit dissipa
behavior.

We may expect that our idea might be extended to
delocalized state in the 3DDS. In this case, the localized s
is already destroyed above mobility edge without the c
pling taking place with any other dynamical degrees of fre
dom. If we prepare the electronic system in an energetic

FIG. 15. Time dependence of~a! an electronic energy,~b! a
phononic energy, and~c! MSD of electron in monochromatically
perturbed cases (L51), whereW50.9, \51/8, b51.0, v50.8,
perturbation strengthe50.1,0.2,0.4, and the frequencyV15A2.
1-13
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HIROAKI YAMADA AND KENSUKE S. IKEDA PHYSICAL REVIEW E 65 046211
excited state and couple it with the test system, then it m
be expected that the stored electronic energy is spont
ously and irreversibly converted into heat and flows into
test system. If this is the case, the 3DDS is the minim
deterministic quantum system in which dissipation and th
malization are self-organized. Thus far, the localizatio
delocalization phenomena have not been explicitly inve
gated from the viewpoint of dissipation and thermalizatio
The significance of dissipation and thermalization in sm
deterministic quantum systems must be investigated m
extensively.

It is expected that such kind of studies become import
in statistical physics of systems with a few degrees of fr
dom such as mesoscopic device@33–36#, molecular machine
systems@37#, quantum computer@38# and so on@39–41#. In

FIG. 16. Time dependence of~a! an electronic energy,~b! a
phononic energy, and~c! MSD of electron in stochastically per
turbed cases, whereW50.9, \51/8, b50.4, and the perturbation
strengthe50.2, 0.3, 0.4, and 0.6.
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particular, investigation of the meaning of heat and dissi
tion in microscopic quantum system will be of fundamen
importance when we evaluate the upper bound of efficie
and controllability of microscopic quantum devices.
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APPENDIX A: MONOCHROMATICALLY PERTURBED
CASES „MÄ1, LÄ1…

In this appendix we observe how the dissipative prope
of the 1DDS changes by applying a monochromatic osci
tory perturbation to the system. As has been discusse
Sec. II B, the additional monochromatic perturbation e
hances the localization length, and therefore we may exp
that a more complete dissipation will be observed when
systemT is coupled withS. We may further expect that th

FIG. 17. ~a! Increasing rateRph of the phononic energy and~b!
diffusion rateD of the localized electron estimated by data in F
16, as a function of the perturbation strength.
1-14
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ANDERSON LOCALIZED STATE AS A . . . PHYSICAL REVIEW E65 046211
test modeT itself plays the role of an additional perturbatio
and the total system becomes equivalent to a dichromatic
perturbed 1DDS in which an unlimited diffusion takes pla
@14#. However, if the coupling betweenS and T is weak
enough, theT mode is not well excited, and the self-induce

FIG. 18. Phonon distributionP(Enph
)5u^nphuC&u2 at several

times (t5100,200,300,400,500) in stochastically perturbed 1DD
The parameters areb50.4 ande50.4.

FIG. 19. Time dependence of~a! an electronic energy,~b! a
phononic energy in stochastically perturbed binary periodic syst
whereW50.9, \51/8, b50.3, e50.2, 0.3, and 0.5.
04621
lly
perturbation is not strong enough to destroy the localizat
completely.

In fact, as shown in Fig. 14, when the coupling strengthb
is small enough (b50.1), the growth of MSD does not reac
the level of the system size and the localization still remai
The increases in the phonon energy, which are shown
Figs. 14~a,b!, also terminate as the electron energy stops
decrease and in turn begin to increases before reaching
zero level. Figure 14 also shows examples of MSD at lar
perturbation strength (e50.2 and 0.4). Delocalization an

.

,

FIG. 20. Increasing rateRph of the phononic energy estimate
by data in Fig. 19 as a function of the perturbation strength.

FIG. 21. Phonon distributionP(Enph
)5u^nphuC&u2 at several

times (t5100,200,300,400,500) in a stochastically perturbed bin
periodic system. The parameters areb50.3 ande50.2, 0.3, and
0.5.
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transfer of energy from electron to phonon seem to conti
on a longer time scale, and an apparently one-way en
transfer occurs fromS to T. However, the electron does no
emit all the possible energy. In this sense the system
comes partially dissipative but a complete relaxation of
ergy is not still realized.

On the other hand, as shown in Fig. 15, if the coupli
strength is large enough (b51.0) the diffusion and a one
way energy transfer continues until it reaches a fully relax
state even at smaller values of perturbation strength.
MSD also approaches the maximum length allowed by
finite system size (m2;1400). The final electronic state wit
almost zero energy can be regarded as an equilibrium s
that contains all the localization bases, whose energies
distributed symmetrically around zero, with even statisti
weight. We can judge that the system is delocalized and
comescompletely dissipativein such a coupling strength re
gime. The flowing rate of energy increases in accorda
with the increment in the perturbation strengthe.

In conclusion, if the coupling strength is small enoug
the localization is not still destroyed and the irreversible
ergy relaxation takes place partially. On the other hand
the coupling betweenS and T becomes strong, a comple
delocalization and a complete dissipation are both realiz

APPENDIX B: DISSIPATION TEST FOR
STOCHASTICALLY PERTURBED CASES

In this appendix we summarize results of dissipation t
for stochastically perturbed delocalized and Bloch state
disordered and binary periodic systems, respectively.

1. Disordered system

Figure 16 shows time dependence of the energy in
cases of the stochastically perturbed localized state for v
ous perturbation strength. In comparison with the polych
matically perturbed cases with the same perturbation stre
e50.4 in Fig. 10, we can see that the effect of the polych
matic perturbation (L>4) are almost the same as that of t
stochastically perturbed one. In the stochastic cases,Eph in-
creases andEel decreases linearly until the states are fu
relaxed. Generally, we may say that the quasistationary
ep
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rt
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th
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ergy transfer from electron to the test phonon mode occur
strong connection with the delocalizing behavior.

The increasing rateRph of the phononic energy of the tes
mode is shown in Fig. 17~a! as a function of the perturbatio
strength, and Fig. 17~b! shows the diffusion rateD estimated
by the data depicted in Fig. 16~c! for some perturbation
strength. With the increase in the perturbation strength, b
Rph andD exhibit a clear linear growth.

Figure 18 shows the semilog plots of the probability d
tribution in the Fock space of the test phonon mode, whic
measured at several time steps. Apparently, all the plots
on straight lines very well. Hence the distribution in the Fo
space is also well fitted by the Boltzmann-type distributio

2. Binary periodic system

Even in cases of Bloch electron a quasistationary one-w
energy transfer can be realized by applying stochastic pe
bation to the system. Figure 19 shows a result of the ene
exchange between the electron and the test mode in cas
the stochastically perturbed Bloch electron. An irreversi
energy transfer can be observed: the energy of the pho
mode increases almost linearly. Correspondingly the ene
of electron decreases on average, but it is accompanied
fluctuation around the zero level.

In Fig. 20 we show the increasing rateRph of the mode
energy as a function of the perturbation strength.Rph in-
creases almost linearly in proportion to the perturbat
strength.

We recall that in the disordered system the polychroma
perturbation (L>4) gives rise to almost the same effect
the stochastic perturbation. On the contrary, in case of
periodic system the polychromatic perturbation brings no
reversible energy transfer, but the stochastic perturbation
sults in an apparently irreversible behavior although the
ergy transfer process is accompanied by an enorm
fluctuation.

Furthermore, it should be noted that in the case of p
odic system the statistical behavior of the phonon mo
seems not to be well fitted by the Botzmann-type distrib
tion. Indeed, the distribution fluctuates so violently that t
temperature can no longer be well-defined~see Fig. 21!. It is
a remarkable difference from the disordered system.
ett.
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